Cosine-Gauss Plasmon Beam: A Localized Long-Range Nondiffracting Surface Wave
نویسندگان
چکیده
منابع مشابه
Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave.
A new surface wave is introduced, the cosine-Gauss beam, which does not diffract while it propagates in a straight line and tightly bound to the metallic surface for distances up to 80 μm. The generation of this highly localized wave is shown to be straightforward and highly controllable, with varying degrees of transverse confinement and directionality, by fabricating a plasmon launcher consis...
متن کاملLong-wave infrared surface plasmon grating coupler.
We present a simplified analytic formula that may be used to design gratings intended to couple long-wave infrared radiation to surface plasmons. It is based on the theory of Hessel and Oliner (1965). The recipe is semiempirical, in that it requires knowledge of a surface-impedance modulation amplitude, which is found here as a function of the grating groove depth and the wavelength for silver ...
متن کاملSelf-imaging generation of plasmonic void arrays.
A plasmonic device is proposed to produce a self-imaging surface plasmon void array (2D surface bottle beam array) by the interference of two nondiffracting surface beams, namely, cosine-Gauss beams. The self-imaging surface voids are shown by full-wave calculations and then verified experimentally with an aperture-type near-field scanning optical microscope. We also demonstrate that the void a...
متن کاملDynamic cosine-Gauss plasmonic beam through phase control.
We carry out an approach to dynamic manipulation of a nondiffracting cosine-Gauss plasmonic beam (CGPB) illuminated with an incident phase modulation within nanostructures by a spatial light modulator (SLM). By changing the hologram addressed on the SLM, dynamic control on the lobe width and the propagating direction of the CGPB is experimentally verified. Finally, we demonstrate an application...
متن کاملLong-range surface plasmon resonance imaging for bioaffinity sensors.
A novel bioaffinity sensor based on surface plasmon resonance (SPR) imaging measurements of a multiple-layered structure that supports the generation of long-range surface plasmons (LRSPs) at the water-metal interface is reported. LRSPs possess longer surface propagation lengths, higher electric field strengths, and sharper angular resonance curves than conventional surface plasmons. LRSPR imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2012
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.109.093904